K-Geodetic Graphs and their Applications to Analysis across Different Scales of Dynamics of Complex Systems
نویسندگان
چکیده
This paper describes a new approach to the problem of the structural research of clusters based on the theory of geodetic and k-geodetic graphs. We firmly believe that this same approach can be used when solving problems of correlation between structural and spectral metrics in complex networks. So, what we want to point out is about the possibility of applying one theory of networks (the theory of k-geodetic networks) to the solution of problems in another type of networks (complex networks). The theory of geodetic graphs and their various modifications represents an important tool for the structural analysis of complex systems of transmission, processing, and analysis of information. In the case of large data sets, their stochastic dependence is described by large-dimensional correlation matrices. One of the problems of correlation analysis is the study of the structure of the correlation matrix. It is proved that such a structure is adequately described by geodetic graphs. The obtained structural data allow solving the choice problem of significant variables in multidimensional regression models.
منابع مشابه
Distinct edge geodetic decomposition in graphs
Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...
متن کاملReliability analysis of repairable systems using system dynamics modeling and simulation
Repairable standby system’s study and analysis is an important topic in reliability. Analytical techniques become very complicated and unrealistic especially for modern complex systems. There have been attempts in the literature to evolve more realistic techniques using simulation approach for reliability analysis of systems. This paper proposes a hybrid approach called as Markov system ...
متن کاملGeometrical Deformation Analysis of Gotvand-Olya Dam Using Permanent Geodetic Monitoring Network Observations
In this paper, two-dimensional deformation analysis of the Gotvand-Olya dam is done using daily, monthly, seasonal and annual displacement vectors derived from permanent observations of the dam geodetic monitoring network. The strain tensor and its invariant parameters like dilatation and maximum shear are computed as well. Nonlinear finite element interpolation based on C1 Cubic Bezier int...
متن کاملDynamics of higher order rational difference equation $x_{n+1}=(alpha+beta x_{n})/(A + Bx_{n}+ Cx_{n-k})$
The main goal of this paper is to investigate the periodic character, invariant intervals, oscillation and global stability and other new results of all positive solutions of the equation$$x_{n+1}=frac{alpha+beta x_{n}}{A + Bx_{n}+ Cx_{n-k}},~~ n=0,1,2,ldots,$$where the parameters $alpha$, $beta$, $A$, $B$ and $C$ are positive, and the initial conditions $x_{-k},x_{-k+1},ldots,x_{-1},x_{0}$ are...
متن کاملSIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.10036 شماره
صفحات -
تاریخ انتشار 2017